
Optimization of Feature Selection

James (Wonshik) Choi Esteban G. Tabak

September 2019

Abstract

A methodology is developed to optimize the feature selection in the
process of predicting a quantity of interest using a selection of features.
It provides indices of the features, w’s, that can be used to minimize the
error between the prediction and the true value of x, a quantity of interest.

1 Introduction

Given a sample consisting of a quantity of interest, {xi}, with its features /
attributes {wih} = {wi1, wi2, · · · }, many machine learning algorithms rely on
studying the i sample points and finding a relationship between the x’s and the
w’s. The algorithms, then can use the found relationship to predict the quantity
xn given the attributes {wnh}.

Now suppose instead of using all the attributes to make the prediction, one
wishes to use only a proportion of them to make the prediction. There could be
various reasons for wanting to limit the number of features. For example, a doc-
tor may know that to lower his patient’s blood pressure, there are 60 different
things that can be done. However, instead of bombarding his patient with too
much information, the doctor might realize that the sodium intake and amount
of exercise are the two most important factors, and tell his patient to focus on
those two.

This paper proposes one method to solve this feature selection problem. Sec-
tion 2 describes how to construct a model of prediction, using the idea of low
rank factorization, to find the relationship between the quantity of interest and
the features. Section 3 describes how a number of features can be reduced by
introducing new features {zil}, which are convex combinations of the original
features {wih}. Also described in Section 3, is the use of penalty function in
order to turn each of these convex combinations into a singular term. In other
words, each z would equal exactly one of the w’s.

In each step, some form of optimization is involved, in order to reduce the
gap between the real values of x’s and the prediction made by z’s and w’s.

1

Unfortunately, the nature of the optimization process sometimes causes the al-
gorithm to be stuck at a local minimum. To get around this problem, a random
restart is used, which is discussed in further details in section 4.

2 Model of Prediction

2.1 Constructing the Model of Prediction

To predict the quantify of interest x using the attributes z’s, we first need to go
through the sample points and establish the relationship between the {xi} and
the {zil}. In other words, we need to find the function F such that xn ≈ F ({znl })
for each n. We claim that this F can be approximated by sums and products
of simpler functions that each takes only one of the z’s.

x ≈
∑
k

∏
l

F kl (zl) (1)

The two motivations for the claim comes from low rank factorization of matrices
and separation of variables in two dimensional heat equation.

For discrete {zl}, we can apply the result from linear algebra that for any matrix
A, we can write A =

∑r
k=1 σkukv

T
k , where r = rank(A), σk are the singular

values of A, and uk, vk are some column vectors. The low rank factorization of
A would be A ≈

∑n
k=1 σkukv

T
k for some n < r.

By letting ūk = σkuk, we can rewrite this equation as A ≈
∑n
k=1 ūkv

T
k , or Aij ≈∑n

k=1 ū(i)v(j), which is equivalent to A(i, j) ≈
∑n
k=1 ū(i)v(j). Extending this

to tensors, we can write A(z1, z2, · · · , zm) ≈
∑n
k=1 F

k
1 (z1)F k2 (z2) · · ·FKm (zm) =∑n

k=1

∏m
l=1 F

k
l (zl), which is equivalent to (1).

For continuous {zl}, we take the motivation from the fact that for T (x, y, t),
the temperature at point (x, y) at time t, we can write

T (x, y, t) =
∑
m

∑
n amnsin(µmx)cos(νny)e−λ

2
mnt. This is an example of a func-

tion of multiple variables following the form of (1) even when the variables are
not discrete.

Now for any function F kl , we should be able to approximate it using a basis
of simpler functions. i.e. Fl(zl) ≈

∑
j a

kl
j φj(zl), where φj ’s are simpler func-

tions such as polynomials. Therefore,

x ≈
∑
k

∏
l

∑
j

aklj φj(zl) (2)

Now suppose that for some n, there is no correlation between x and zn. Then,
it seems appropriate that F kn should equal to some nonzero constant for all k.

2

For this to be true, as F kn ≈
∑
j a

kn
j φj , we should make our approximation with

some φj equal to a constant function.

x ≈
∑
k

∏
l

[akl +
∑
j

aklj φj(zl)] (3)

However, the constants akl’s can cause gauge invariance, and result in fluctua-
tions of aklj ’s. Therefore, instead of using k · l different variables akl’s, we will
be replacing them by 1, and using a global constant c to match our prediction
with the quantity of interest in our samples.

Now suppose we were to multiply our prediction by c, so that x ≈ c
∑
k

∏
l[1 +∑

j a
kl
j φj(zl)]. The problem with this model can be seen in an example where

x = z1, k = 1 and φ1(z) = z. In this case, all the F kl would set to be 1 for l 6= 1.
And we would have x ≈ c(1 + az1). In this case, because of the constant 1, c
would bet smaller and smaller and a would get bigger and bigger as we try to
minimize the error. For our method for solving for aklj which will be discussed
in section 2.2, the a’s getting too big can become problematic. Therefore, in-
stead of multiplying, we add a constant c to our prediction, and our model of
prediction is

x ≈ c+
∑
k

∏
l

[1 +
∑
j

aklj φj(zl)] (4)

2.2 Solving for the a’s (Alternating Method)

A paper by Esteban Tabak and Giulio Trigila suggests that an optimization of
a system in the form of (1) can be solved by solving for each F kl , one l at a
time. In other words, we shall solve for F k1 with all the other F kl with l 6= 1
fixed, then solve for F k2 , and carry on in a cycle. In this paper, this method of
optimization will be called an Alternating Method, as we alternate the function
variable which we are solving for.

With our model of prediction (4), this is equivalent to solving for the aklj , for

each l at a time. Also, every time we solve for aklj , it seems appropriate that

we update c as well. Without changing c, the mean of
∑
k

∏
l[1 +

∑
j a

kl
j φj(zl)]

would stay at a constant value, x̄− c, which is a constraint that is unnecessary.

3

For any m, We can rewrite (4) as

x1

x2

...
xn

 ≈ [Bm1 Bm2 · · · Bmq Jn,1
]

a1m
1

a1m
2
...

a1m
p

a2m
1
...

aqmp
c

(5)

where n is the number of sample points, p is the number of φ’s used to approx-
imate F kl ’s, and q is the number of rank used in the model of prediction. Jn,1
is defined to be the n x 1 matrix of ones and Blk is defined so that

Blk =
∏
l′ 6=l

F kl′ (zl′)

 φ1(z1
l) · · · φp(z

1
l)

...
. . .

...
φ1(znl) · · · φp(z

n
l)

 (6)

Writing (5) as x ≈ Bam, we can find ām = (BTB)−1BTx such that ām is the
choice of am that minimizes the 2-norm of x−Bam.

The alternating method involves replacing aklj by āl for each l until the a’s con-
verge. The correctness of our model of prediction and the alternating method
is demonstrated in Figure 1. The third plot of Figure 1 shows that a prediction
with full rank produces the exact match

Figure 1: Plots of the actual x values vs our prediction of x using the model
and method described in this paper. The quantity of interest had rank 3, and
the prediction was made with rank 1, rank 2, and rank 3 respectively.

3 Reducing the Number of Attributes

3.1 Introducing the γ’s

Now that we have our model of prediction, our next task is to choose our z’s out
of the given w’s so that the best prediction can be made. An obvious solution

4

to this problem would be to try different combinations of w’s and compare the
results to find the best combination. However, this becomes very costly as the
number of w gets larger.

Instead, we let z’s be convex combinations of w’s. In other words, zl =
∑
h α

l
hwh,

where each α’s are nonnegative, and
∑
h α

l
h = 1 for each l. To enforce these

constraints, we introduce new variables γ’s, and let αlh =
γl
h
2∑

m γl
m

2 . So we can

rewrite our model of prediction as

x ≈ c+
∑
k

∏
l

[1 +
∑
j

aklj φj(z
l)]

= c+
∑
k

∏
l

[1 +
∑
j

aklj φj(
∑
h

αlhw
h)]

= c+
∑
k

∏
l

[1 +
∑
j

aklj φj(
∑
h

γlh
2∑

m γ
l
m

2w
h
i)]

(7)

To find the right values of γ’s, we’ll be using the gradient descent method. We
still wish to minimize the 2-norm of the error between the x’s and our predicted
x’s. Therefore, the objective function we aim to minimize would be

obj =
∑
i

[xi − c−
∑
k

∏
l

[1 +
∑
j

aklj φj(
∑
h

γlh
2∑

m γ
l
m

2w
h
i)]]2 (8)

Taking the derivative of this in respect to γlh, we get

δ

δγlh
obj = −2

∑
i

errori
∑
k

∏
L 6=l

F kL(zLi)
∑
j

akj lφ
′
j(z

l
i)

2γlh
Sl

(whi −
∑
H

γlH
2

Sl
wHi) (9)

where errori = xi − c −
∑
k

∏
l[1 +

∑
j a

kl
j φj(z

l
i)], F

k
l (zli) = 1 +

∑
j a

kl
j φj(z

l
i),

φ′j is the derivative of φj , and Sl =
∑
h γ

l
h

2
.

Just like solving for a’s, we solve for γ’s for each l separately. At each iter-
ation, we move the γ’s in the direction of the negative of the gradient. Hence,
the new set of γ’s, γ′, is defined by reducing the components of γ corresponding
to l by β δ

δγl
h
2 obj where β is a step size chosen arbitrarily. And then, if the ob-

jective function value with γ′ is higher than that with the original γ, we reduce
β until the new objective function value is lower than the original.

Repeating this procedure along with the alternating method described above,
we solve for a’s and γ’s simultaneously. The order of our algorithm is: solve for
ak1
j → solve for γ1

h → solve for ak1
j → solve for ak2

j → solve for γ2
h → solve for

ak2
j → · · ·

5

3.2 Using the Penalty Function

So far, we’ve reduced the number of attributes by substituting the w’s by z’s.
However, this is not good enough as the z’s are still convex combinations of the
w’s, i.e. zl =

∑
h α

l
hwh. To achieve our goal, we need each z to equal a distinct

w, which means that for each l, αlh must equal 1 for exactly one of the h’s and
zero for the others. In other words, for each l, γlh must equal 0 for all the h’s
except for exactly one of them. In this paper, this will be called the Separation
of the Gammas.

As the γ’s are modified during the gradient descent process, we need to make
sure that the separation of the gammas happen during gradient descent. To do
this, we modify our objective function and add a penalty function, which will
decrease in value as the separation of the gammas happen.

obj =
∑
i

error2
i + µ · penalty (10)

Here, µ is the penalty constant which determines how much the objective func-
tion is penalized for not having its γ’s separated. There are many options for the

penalty function; one simple choice would be −
∑
h,l α

l
h

2
. By doing the gradient

descent with an appropriate value of µ, the γ’s will be solved so that the error
is minimized and the separation of the gammas is achieved simultaneously.

3.3 Choice of µ

For the gradient descent method to work with the new objective function (9),
the choice of µ is important. If µ is too big, the separation of the gammas would
happen way too quickly and the algorithm would be stuck at a local minimum.
This is useless as it is equivalent to selecting random z’s out of the w’s without
considering the minimization of the error. On the other hand, if µ is too small,
the gradient descent would prioritize minimizing the error that the separation
of the gammas may never happen.

In fact, it seems almost impossible to find the right value of µ. Although the
optimal penalty value is known (−l), the optimal error value is unknown, which
makes it difficult to find a constant that will balance out the two. Instead,
it seems more appropriate that µ changes over time. More precisely, it seems
logical to have µ small in the beginning and have it get bigger gradually. This
way, in the beginning of the program, the algorithm looks to minimize the error
without worrying too much about the separation of the gammas. Then, once
the error is small and the program is not making much progress, µ should get
bigger and enforce the separation of the gammas.

Considering this, a good choice of µ would be 1
yi−ȳi , where yi is the predic-

tion made with (7) with the a and γ values before the current gradient descent
iteration, and ȳi is the prediction made with the a and γ values a step (one

6

iteration of alternating method) before that. However, this is not good enough.
Since the alternating method decreases the error value but may increase the
objective function, and the gradient descent decreases the objective function
but may increase the error value, sometimes the program may end up in a loop
where the yi values fluctuate. In this case, the µ value will not get larger and
the program may never converge. To prevent this, we ensure that µ always gets
larger, even if at a very slow rate.

µi = max(µi−1,
1

|yi − ȳi|
) (11)

4 Stopping and Restarting

Due to the nature of the optimization process, our algorithm can get stuck at
a local minimum. There seems to be no easy way to get around this problem.
The best we can do is to restart the program at a random point, and try this
multiple times until we find the global minimum.

4.1 Stopping the Program

To perform random restart, first we need to know when to stop the program.
A good place would be when enough separation of the gammas has happened,
as once the gammas have been separated, it is unlikely that the choice of z’s
would be altered. A good way to measure the separation of the gammas is by
using the penalty function.

Let ᾱl denote the maximal αlh corresponding to l. The optimal case would
be when all the ᾱl’s are at 1, which means the separation of the gammas is
complete. In this case, the value of the penalty function would be −l. However,
stopping the program when penalty = −l+0.3 should be sufficient. Even at the
worst case, where all but one ᾱl are at 1, calculations show that minl ᾱl would
be at around 0.82. This is sufficient for the decision of z’s.

Now with the stop condition, we have our full algorithm for one try of finding
the z’s. The pseudocode is provided in Algorithm 1, TrySolve. TrySolve takes
x, w, and random values of a’s and γ’s. Then, it returns the indices of w’s
selected for the final z’s and the values of a’s that were used with those z’s to
minimize the error.

7

Algorithm 1 TrySolve

h← the number of total attributes
i← the number of sample points
j ← the number of φ’s used
k ← the rank of approximation
l← the number of attributes selecting
ȳ ← i x 1 vector of zeros
y ← i x 1 vector of ∞
z ← created using w’s and the given γ values
while l + penalty > 0.3 do
for var = 1 : l do
ȳ ← y
update akvarj by using Alternating Method
update y
µ← max(µ, 1

|y−ȳ|)

update γvarh by using Gradient Descent
update z’s using the new γ’s
update akvarj by using Alternating Method

end for
end while
return a, and array of h’s such that αlh > 0.5 for some l

4.2 Random Restart

When TrySolve algorithm returns an array of of indices, these indices may not
be valid. This is the case, when there are repeated indices. Clearly, this is
not optimal, however there still can be some information that can be retrieved
from this. If an attribute wm is selected twice or more, it is likely that wm is
closely related to the quantity of interest. Therefore, although a random restart
is needed for this case, we set α1

m to be 1 for the next TrySolve iteration.

On the other hand, if the indices are valid, we use the given indices and the a’s
to run Alternating Method to find the error value associated with these indices.
We record the indices and the error value associated with these indices. Then we
run another iteration of TrySolve with completely random gammas. We repeat
this process and continue to update the minimum error value and the indices
corresponding to the minimum error. The program ends when the same mini-
mum error value is obtained λ times (The higher the value of λ is, the slower
and more accurate the program is). The psuedocode for the full algorithm is
given in Algorithm 2.

The ε value is included in the algorithm due to the fact that the program
doesn’t always return the minimum error value even if the optimal indices are
used.

8

Algorithm 2 FullSolve

count← 0
minError ←∞
minAttr ← lx1 vector of zeros
λ← the number of minimum error wanted
while count > λ do

get a and attr by running TrySolve
reset γ’s to random
if index m is repeated in attr then
γ1
m ← 1

for l 6= 1 do
γlm ← 0

end for
for h 6= m do
γ1
h ← 0

end for
else
errorNorm← the error value computed using the indices from attr with
the Alternating Method
if errorNorm < minError + ε then

if attr = minAttr or |minError − errorNorm| < ε then
count← count+ 1
if errorNorm < minError then
minError ← errorNorm
minAttr ← attr

end if
else
minError ← errorNorm
minAttr ← attr
count← 0

end if
end if

end if
end while
return minAttr

9

5 Conclusion

This paper describes a two-stage method which finds the optimal features to
be used when a selection of features is to be used for a model of prediction of
quantity of interest. The first stage involves using the alternating method and
gradient descent simultaneously in order to find the features which minimizes
the error function locally. Then, these local minimum values is evaluated mul-
tiple times at the second stage to find the absolute minimum value.

By the nature of an algorithm that uses random restart, the accuracy and the
speed of the algorithm can vary depending on the values of variables such as λ
and ε. Optimization of these values could be further looked into. Testing the
algorithm with a real data is also something that the authors intend to do in
the near future.

10

